产品中心PRODUCT CENTER

在发展中求生存,不断完善,以良好信誉和科学的管理促进企业迅速发展
资讯中心 产品中心

首页-产品中心-数字语音关键事件检测供应

数字语音关键事件检测供应

更新时间:2025-10-20      点击次数:3

    在本实现方式中,类图像为:当前帧图像和当前帧图像之前的连续m帧图像的多张图像,其中,m为正整数;或者,类图像为:当前帧图像。也就是说,在本实现方式中,电子设备可以将所获得的当前帧图像确定为待分析图像;此外,在获取到当前帧图像,并判断该当前帧图像包括目标对象后,电子设备可以判断所获取的关于目标防护舱的当前帧图像之前的连续m帧图像是否均包括目标对象,这样,便可以将当前帧图像和该m帧图像确定为待分析图像。这样,用于确定关于目标防护舱的事件检测结果的待分析图像为多张,可以更充分地反映目标防护舱内部空间的情况,进而提高事件检测的准确率。其中,m可以为任一正整数,例如,5,10等。s304:将待分析图像输入到预设的检测模型中,得到关于目标防护舱的事件检测结果;其中,检测模型为:基于各个样本图像和每个样本图像的事件检测结果所训练得到的模型。在确定待分析图像后,电子设备便可以将待分析图像输入到预设的检测模型中,得到关于目标防护舱的事件检测结果。具体的,在将待分析图像输入到预设的检测模型中后,电子设备可以得到预设的检测模型的输出结果,进而,根据该检测结果,电子设备便可以确定关于目标防护舱的事件检测结果。其中。语音关键事件检测领域有哪些?欢迎来电咨询!数字语音关键事件检测供应

    本文涉及事件数据处理技术,尤指一种语音关键事件检测检测方法和装置。背景技术:互联网上每天都会产生大量的新闻数据,描述许多已经发生的事件。但由于事件种类繁多,无法快速而且准确地分辨事件的类型以及事件中的主体。对发生的公共事件或者特定行业内所发生的事件进行区分和主体识别,不仅有助于实时把握事件的发展趋势以及整个行业的发展方向,也可辅助高层决策,降低风险,具有重要的实际应用价值和研究意义。现有进行语音关键事件检测的方法大都辅助使用已有的自然语言处理工具,但是在实际应用中并不能通过这些工具预先处理好。事件的类型往往可以从一些关键词中获取,比如”杀”,“袭击”等,这类词就被称为触发词。因此快速准确地识别出这些触发词就极其重要。现有的语音关键事件检测识别方法:基于图神经网络的模型;[2]基于深度学习、注意力机制、序列标注的模型等。现有方法存在以下缺点:1、现有方法只进行事件类型检测即事件触发词,并没有进行事件主体抽取,任务单一,不具备较强的实际应用价值。2、现有方法大都使用特定的自然语言处理工具,如jieba,ltp,standfordnlp等首先对句子进行分词,建立依存树,然后再将这些特征输入模型。广西信息化语音关键事件检测哪里买语音关键事件检测的难点有哪些?

    在本申请的示例性实施例中,在通过双向lstm网络获得语句的向量化语义表示w1之前,所述方法还可以包括:将语句中的m个字符随机初始化为一个维度为[m,n]的n维向量d,其中,对于从0到m-1的索引id,每个id对应一个不同的字符;对于长度为s的语句,该语句中每一个字符能够在向量d中找到对应的id,从而获得维度为[s,d]的向量。在本申请的示例性实施例中,通过双向lstm网络获得语句的向量化语义表示w1可以包括:将维度为[s,d]的向量输入预设的双向lstm神经网络,将所述双向lstm神经网络的输出作为语句的向量化语义表示w1。在本申请的示例性实施例中,通过bert模型获得语句的向量化语义表示w1可以包括:将语句直接输入所述bert模型,将所述bert模型的输出作为语句的向量化语义表示w1。在本申请的示例性实施例中,所述向量化语义表示w1的维度可以为[s,d1];其中,当通过双向lstm网络获得语句的向量化语义表示w1时,d1为2*lstm隐层节点数;当通过bert模型获得语句的向量化语义表示w1时,d1=768。在本申请的示例性实施例中,所述方法还可以包括:预先将触发词的类型划分为x种,将事件主体的类型划分为y种,其中,x、y均为正整数;在获得语句的向量化语义表示w1之前。

    每种类型与某一数字对应,以便于计算机的处理,则可以分别标记为[0,1,2,3,4,...,29,30]。在本申请的示例性实施例中,因计算机无法直接处理中文,因此可以将句子(语句)中每一个单词转化为数字的映射。即,获得语句的向量化语义表示w1。在本申请的示例性实施例中,所述获得语句的向量化语义表示w1可以包括:通过双向lstm网络模型或bert模型获得语句的向量化语义表示w1。在本申请的示例性实施例中,在通过双向lstm网络获得语句的向量化语义表示w1之前,所述方法还可以包括:将语句中的m个字符随机初始化为一个维度为[m,n]的n维向量d,其中,对于从0到m-1的索引id,每个id对应一个不同的字符;对于长度为s的语句,该语句中每一个字符能够在向量d中找到对应的id,从而获得维度为[s,d]的向量。在本申请的示例性实施例中,通过双向lstm网络获得语句的向量化语义表示w1可以包括:将维度为[s,d]的向量输入预设的双向lstm神经网络,将所述双向lstm神经网络的输出作为语句的向量化语义表示w1。在本申请的示例性实施例中,假设语料中一共有20000个不同的字符(汉字和/或单词,可以包括其他常用符号),每个字符可以随机初始化为一个300维的向量,则可以得到一个维度为[20000。语音关键事件检测一般应用在什么行业?欢迎来电咨询!

    这样,电子设备在每获取到一帧图像时,便可以利用该帧图像和该帧图像的前一帧图像,得到该帧图像对应的光流图。进一步的,在本实现方式中,上述步骤s303,基于当前帧图像,确定待分析图像,便可以包括如下步骤e1:步骤e1:将至少包含光流图在内的第二类图像确定为待分析图像,其中,第二类图像中各个图像均为:基于每两帧连续的关于目标防护舱且包括目标对象的图像获取的光流图,光流图为当前帧图像对应的光流图。由于电子设备实时获取的关于目标防护舱的图像均为目标图像采集设备所采集的、能够反映目标防护舱的内部空间在每个时刻的真实情况的图像,而光流图是基于这些关于目标防护舱的图像中人物的运动变化情况获得的,因此,电子设备可以将光流图确定为待分析图像。从而,利用待分析图像,确定当前时刻,关于目标防护舱的事件检测结果。其中,为了描述简单,可以将当前帧图像的光流图简称为光流图。其中,由于本发明实施例是对目标防护舱内的用户是否处于正常情况中进行检测,因此,第二类图像中的各个光流图应该是关于目标防护舱中用户运动情况的光流图。进一步的,由于每帧光流图是通过连续两帧图像获取到的,因此,在本实现方式中。语音关键事件检测在国际上的运用如何?重庆新一代语音关键事件检测内容

语音关键事件检测的成熟度如何?欢迎咨询!数字语音关键事件检测供应

    并且对于本领域的普通技术人员来说显而易见的是,在本申请所描述的实施例包含的范围内可以有更多的实施例和实现方案。尽管在附图中示出了许多可能的特征组合,并在具体实施方式中进行了讨论,但是所公开的特征的许多其它组合方式也是可能的。除非特意加以限制的情况以外,任何实施例的任何特征或元件可以与任何其它实施例中的任何其他特征或元件结合使用,或可以替代任何其它实施例中的任何其他特征或元件。本申请包括并设想了与本领域普通技术人员已知的特征和元件的组合。本申请已经公开的实施例、特征和元件也可以与任何常规特征或元件组合,以形成由权利要求限定的独特的发明方案。任何实施例的任何特征或元件也可以与来自其它发明方案的特征或元件组合,以形成另一个由权利要求限定的独特的发明方案。因此,应当理解,在本申请中示出和/或讨论的任何特征可以单独地或以任何适当的组合来实现。因此,除了根据所附权利要求及其等同替换所做的限制以外,实施例不受其它限制。此外,可以在所附权利要求的保护范围内进行各种修改和改变。此外,在描述具有代表性的实施例时,说明书可能已经将方法和/或过程呈现为特定的步骤序列。然而。数字语音关键事件检测供应

关注我们
微信账号

扫一扫
手机浏览

Copyright©2025    版权所有   All Rights Reserved   北京密码行房地产经纪有限公司  网站地图  移动端